Stimulation of Autophagy Improves Endoplasmic Reticulum Stress–Induced Diabetes
نویسندگان
چکیده
Accumulation of misfolded proinsulin in the β-cell leads to dysfunction induced by endoplasmic reticulum (ER) stress, with diabetes as a consequence. Autophagy helps cellular adaptation to stress via clearance of misfolded proteins and damaged organelles. We studied the effects of proinsulin misfolding on autophagy and the impact of stimulating autophagy on diabetes progression in Akita mice, which carry a mutation in proinsulin, leading to its severe misfolding. Treatment of female diabetic Akita mice with rapamycin improved diabetes, increased pancreatic insulin content, and prevented β-cell apoptosis. In vitro, autophagic flux was increased in Akita β-cells. Treatment with rapamycin further stimulated autophagy, evidenced by increased autophagosome formation and enhancement of autophagosome-lysosome fusion. This was associated with attenuation of cellular stress and apoptosis. The mammalian target of rapamycin (mTOR) kinase inhibitor Torin1 mimicked the rapamycin effects on autophagy and stress, indicating that the beneficial effects of rapamycin are indeed mediated via inhibition of mTOR. Finally, inhibition of autophagy exacerbated stress and abolished the anti-ER stress effects of rapamycin. In conclusion, rapamycin reduces ER stress induced by accumulation of misfolded proinsulin, thereby improving diabetes and preventing β-cell apoptosis. The beneficial effects of rapamycin in this context strictly depend on autophagy; therefore, stimulating autophagy may become a therapeutic approach for diabetes.
منابع مشابه
Allantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions
Objective(s): Non-alcoholic steatohepatitis (NASH) is defined by steatosis and inflammation in the hepatocytes, which can progress to cirrhosis and possibly hepatocellular carcinoma. However, current treatments are not entirely effective. Allantoin is one of the principal compounds in many plants and an imidazoline I receptor agonist as well. Allantoin has positive eff...
متن کاملThe endoplasmic reticulum stress/autophagy pathway is involved in cholesterol-induced pancreatic β-cell injury
Lipotoxicity has been implicated in pancreatic β-cell dysfunction in type 2 diabetes, but the exact mechanisms remain unknown. The current study explored the role of the endoplasmic reticulum (ER) stress pathway in cholesterol-induced lipotoxicity. Two different insulinoma cell lines were treated with cholesterol with or without inhibitors. ER stress-associated proteins glucose-regulated protei...
متن کاملRapamycin Improves Palmitate-Induced ER Stress/NFκB Pathways Associated with Stimulating Autophagy in Adipocytes
Obesity-induced endoplasmic reticulum (ER) stress and inflammation lead to adipocytes dysfunction. Autophagy helps to adapt to cellular stress and involves in regulating innate inflammatory response. In present study, we examined the activity of rapamycin, a mTOR kinase inhibitor, against endoplasmic reticulum stress and inflammation in adipocytes. An in vitro model was used in which 3T3-L1 adi...
متن کاملLiraglutide Improves the Survival of INS-1 Cells by Promoting Macroautophagy
BACKGROUND Type 2 diabetes mellitus (T2D) is a metabolic disease characterized by dysfunction of pancreatic beta cell and insulin resistance. Liraglutide, which has many special anti-diabetes biological effects, is found to inhibit beta cell death and ameliorate endoplasmic reticulum stress (ERs) induced by free fatty acid (FFA). Macroautophagy (hereafter referred to as autophagy) altered by FF...
متن کاملCurcumin Improves Palmitate-Induced Insulin Resistance in Human Umbilical Vein Endothelial Cells by Maintaining Proteostasis in Endoplasmic Reticulum
Dysfunction of proteasome and autophagy will result in disturbance of endoplasmic reticulum (ER) proteostasis, and thus lead to long-term and chronic ER stress and subsequent unfolded protein response (UPR), which is implicated in the occurrence and development of insulin resistance. Curcumin exerts beneficial metabolic effects in in vitro cells and in vivo animal models of diabetes and diabeti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 62 شماره
صفحات -
تاریخ انتشار 2013